Skip to main content

Performance

note
  • Memory SIMD-Vector processing performance only
  • Dataset: 100,000,000,000 (100 Billion)
  • Hardware: AMD Ryzen 7 PRO 4750U, 8 CPU Cores, 16 Threads
  • Rust: rustc 1.56.0-nightly (e3b1c12be 2021-08-02)
  • Build with Link-time Optimization and Using CPU Specific Instructions
QueryDatabendQuery (v0.4.76-nightly)
SELECT avg(number) FROM numbers_mt(100000000000)3.712 s.
(26.94 billion rows/s., 215.52 GB/s.)
SELECT sum(number) FROM numbers_mt(100000000000)3.669 s.
(27.26 billion rows/s., 218.07 GB/s.)
SELECT min(number) FROM numbers_mt(100000000000)4.498 s.
(22.23 billion rows/s., 177.85 GB/s.)
SELECT max(number) FROM numbers_mt(100000000000)4.438 s.
(22.53 billion rows/s., 180.25 GB/s.)
SELECT count(number) FROM numbers_mt(100000000000)2.125 s.
(47.07 billion rows/s., 376.53 GB/s.)
SELECT sum(number+number+number) FROM numbers_mt(100000000000)17.169 s.
(5.82 billion rows/s., 46.60 GB/s.)
SELECT sum(number) / count(number) FROM numbers_mt(100000000000)3.696 s.
(27.06 billion rows/s., 216.45 GB/s.)
SELECT sum(number) / count(number), max(number), min(number) FROM numbers_mt(100000000000)8.348 s.
(11.98 billion rows/s., 95.83 GB/s.)
SELECT number FROM numbers_mt(10000000000) ORDER BY number DESC LIMIT 103.164 s.
(3.16 billion rows/s., 25.28 GB/s.)
SELECT max(number), sum(number) FROM numbers_mt(1000000000) GROUP BY number % 3, number % 4, number % 5 LIMIT 101.657 s.
(603.62 million rows/s., 4.83 GB/s.)
Notes

DatabendQuery system.numbers_mt is 16-way parallelism processing, gist

100,000,000,000 records on laptop show

Experience 100 billion performance on your laptop, talk is cheap just bench it